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Abstract
We study the one-dimensional Schrödinger equation and derive exact
expressions for the Green function in terms of reflection coefficients which
are defined for semi-infinite intervals. We also discuss the relation between our
results and the WKB approximation.

PACS numbers: 03.65.Nk, 02.30.Hq, 02.50.Ey

1. Introduction

Let us consider the Green function for the steady-state Schrödinger equation in one dimension,

− d2

dx2
ψ(x) + VS(x)ψ(x) = k2ψ(x). (1.1)

The Green function plays important roles in various physical problems, and there are many
approaches to the study of the Green function. In this paper, we discuss a new description of
the Green function in terms of reflection coefficients.

From the physical point of view, it is natural to interpret the propagation of waves in
terms of the processes of multiple reflections and transmissions. In quantum mechanics, this
interpretation has been used, for the most part, in the context of semiclassical approximations
[1, 2]. The Bremmer series, which is a perturbative improvement of the WKB approximation,
is based on this picture [3]. A similar idea is used in the invariant embedding method
[4], which has applications in many areas including transport problems in astrophysics,
conductors and random media [5–8]. The essence of the invariant embedding method is
to express everything in terms of ‘emergent’ or ‘observable’ quantities such as transmission
and reflection coefficients, without need of considering what is happening within the system.
In this method, one deals with reflection coefficients for finite intervals, and, by varying the
endpoint of the interval, derives a differential equation of Riccati type satisfied by the reflection
coefficients. The derivation of this Riccati equation is essentially equivalent to taking account
of the transmission and reflection processes at the endpoint.
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It is possible to use the same idea to construct the Green function. By taking the sum over
all the multiple reflections and transmissions, we can derive exact expressions for the Green
function [9, 10]1. These expressions are written in terms of the transmission coefficient for a
finite interval, and the reflection coefficients for finite and semi-infinite intervals. With these
expressions, the analysis of the Green function can be reduced to that of the transmission and
reflection coefficients.

The structure of reflection coefficients for semi-infinite intervals has been thoroughly
studied, and various formulae have been obtained for their high- and low-energy behaviours
[11]. However, the mathematical structure of transmission coefficients is not as simple. This is
because transmission coefficients are ‘non-local’ quantities in the sense that they are functions
of two endpoints of the finite interval. We may say that, in a sense, reflection coefficients
are more fundamental quantities than transmission coefficients. The analysis of the Green
function becomes much easier if it is expressed solely in terms of reflection coefficients for
semi-infinite intervals, without using transmission coefficients. It is the objective of the present
paper to derive such expressions.

The expressions in terms of reflection coefficients are particularly useful for the analysis
in the high- and low-energy regions. By using the formulae already known for the reflection
coefficients, we can derive new formulae for asymptotic expansions of the Green function.
The advantage of this approach over conventional methods is that it can be applied to a
larger class of potentials. The reflection coefficients can be defined irrespective of whether
the potential VS(x) is finite or infinite as x → ±∞; we do not need to assume that VS(x)

vanishes sufficiently rapidly at infinity, as is necessary for the description using Jost solutions.
We do not need to care about the existence of bound states, nor do we have to know the
eigenvalues. Conventional methods of analysis are sensitive to the behaviour of the potential
at infinity, and it is often necessary to use different methods for different kinds of potentials.
In the formulation in terms of reflection coefficients, the analysis of the Green function can
be carried out for various types of potentials in a unified way. In addition, the formulae for
asymptotic expansions obtained in this method are more explicit than the ones obtained by
conventional methods. (This will be discussed in a separate paper.)

The expressions in terms of reflection coefficients are also convenient for calculating the
Green function in practical situations, either approximately or numerically. It turns out that
the expressions derived in this paper have a close relation with the WKB method. In the light
of the formalism developed here, we can understand the WKB method from a new viewpoint,
which may possibly lead to new improvements of the WKB approximation. Our expressions
can also be used as a basis for other new approximation methods. Since the reflection
coefficients are quantities that have a clear physical meaning, expressing the Green function in
terms of them is useful for the purpose of making approximations. The reflection coefficients
are also suited for numerical treatments, and so these expressions will be useful for the
numerical calculation of the Green function too.

In our method of derivation, we make use of the Fokker–Planck equation. It is well
known that the Schrödinger equation (1.1), with an appropriate shift of the energy level, can
be transformed into a Fokker–Planck equation [12]. The (time-independent) Fokker–Planck
equation describing the Brownian motion in a potential V (x) has the form

− d2

dx2
φ(x) + 2

d

dx
[f (x)φ(x)] = k2φ(x), (1.2)

1 The expression for the Green function derived in [10] for segmented potentials is identical to the one obtained in
[9] for the Fokker–Planck equation.
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where

f (x) ≡ −1

2

d

dx
V (x). (1.3)

Equation (1.2) is equivalent to (1.1), where

ψ(x) = eV (x)/2φ(x), VS(x) = f ′(x) + f 2(x). (1.4)

With the use of the Fokker–Planck equation, it becomes easier to study the structure of the
transmission and reflection coefficients, and various formulae take simpler forms. In particular,
a symmetry transformation of the Fokker–Planck equation plays a crucial role in our method.
As a result, we obtain a one-parameter family of expressions, which reflects the symmetry
structure of the Fokker–Planck equation.

We assume that VS(x) either converges to a finite value or diverges to +∞ as x → +∞,
and that VS(x) is also either finite or +∞ as x → −∞. (We do not consider the cases where
VS(x) tends to −∞ as x → ±∞ or the cases where VS(x) oscillates at infinity.) We also
assume that k is, in general, a complex number with Im k � 0. Let GS(x, x ′; k) denote the
Green function for equation (1.1), satisfying[

∂2

∂x2
− VS(x) + k2

]
GS(x, x ′; k) = δ(x − x ′) (1.5)

with the boundary condition GS(x, x ′; k) → 0 as |x − x ′| → ∞ for Im k > 0. We define

G(x, x ′; k) ≡ 2ikGS(x, x ′; k). (1.6)

In this paper, we shall deal with the quantity G defined by (1.6), rather than GS itself. (For
convenience, we shall also call G the Green function.) Without loss of generality we may
assume that x � x ′. The expressions for x < x ′ are obtained by interchanging x and x ′.

Let us now define the reflection coefficients for semi-infinite intervals. For general VS(x)

(rather than special forms such as piecewise constant or segmented potentials), there is no
unique natural way of defining the reflection coefficients for finite or semi-infinite intervals.
As mentioned above, we shall define them in terms of the Fokker–Planck equation, and this
turns out to give the simplest description. Our definition of the reflection coefficients for
semi-infinite intervals is illustrated in figure 1. Let x0 be an arbitrarily chosen point. We
let the Fokker–Planck potential V (x) in the region x > x0 be replaced by the constant value
V (x0), and define

V̄ (x) ≡ V (x)θ(x0 − x) + V (x0)θ(x − x0), (1.7)

where θ is the Heaviside step function. (Recall that the Schrödinger potential VS(x) is
related to V (x) by equations (1.3) and (1.4).) We consider equation (1.2) with f (x) replaced
by f̄ (x) ≡ −(1/2)(d/dx)V̄ (x). In the region x > x0, where f̄ (x) = 0, this equation
has independent solutions of the form e+ikx and e−ikx . We define the reflection coefficient
Rr(x0,−∞; k) as the coefficient multiplying the reflected wave eik(x−x0) in the region x > x0

when there is an incident wave e−ik(x−x0). In other words, Rr(x0,−∞; k) is defined by a
solution of the form

φ(x) = e−ik(x−x0) + Rr(x0,−∞; k) eik(x−x0) for x > x0, (1.8a)

φ(x) → 0 as x → −∞. (1.8b)

(When k is real, it is necessary to assume in (1.8b) that k has an infinitesimal imaginary part iε
with ε > 0.) If VS(x) = 0 for x1 < x with some x1, and if x1 < x0, then the above definition
of Rr(x0,−∞; k) coincides with the usual definition of the reflection coefficient. In general
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e ik(x )x0

Rr(x0, )eik(x )x0

Rl( ,x0)e ik(x )x0

x0

V(x)

eik(x )x0

Figure 1. Definition of Rr(x0,−∞; k) and Rl(∞, x0; k).

cases, the Schrödinger potential corresponding to the Fokker–Planck potential (1.7) includes
a delta function at x = x0. In the same way, the left reflection coefficient for the interval
(x0, +∞) is defined by considering, instead of (1.7) and (1.8),

V̄ (x) ≡ V (x)θ(x − x0) + V (x0)θ(x0 − x), (1.9)

and

φ(x) = eik(x−x0) + Rl(∞, x0; k) e−ik(x−x0) for x < x0, (1.10a)

φ(x) → 0 as x → +∞. (1.10b)

Our objective is to express the Green function in terms of these two quantities, Rr(x0,−∞; k)

and Rl(∞, x0; k). The results are applicable to any VS(x) (which is either finite or +∞ at
x = ±∞) as long as the reflection coefficients can be defined for it.

2. Boson representation

It was shown in [13] that the Green function can be expressed in a general form in terms of
the Lie superalgebra osp(1/2). We can obtain various expressions of the Green function by
writing this general expression in specific representations. Here, we use a representation in
terms of boson operators, which is convenient for the methods we shall use in this paper.

Let a and a† be the boson annihilation–creation operators, satisfying the commutation
relation

[a, a†] = 1, (2.1)
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×

z

− f (z)
×

z

f (z)

x' x

z2z1

e ik( − )zz2 1

(a)

(b)

Figure 2. (a) A typical diagram connecting the points x′ and x. (The vertical direction of this
figure does not have any particular meaning.) (b) The diagrammatic rules. Each line segment
connecting x1 and x2 corresponds to the free propagator eik(x2−x1). To each turning point of the
path is assigned a factor ±f (z), where the sign is plus if the path comes to that point from the right
and minus if it comes from the left.

and let |0〉 be the boson vacuum state, satisfying

a|0〉 = 0, 〈0|a† = 0, 〈0|0〉 = 0. (2.2)

We regard the space coordinate x as playing the role of the time, and consider the ‘Hamiltonian’

H(x) ≡ −k
(
a†a + 1

2

) − 1
2 if (x)(aa − a†a†), (2.3)

where f (x) is the function defined by (1.3). The free part of this Hamiltonian, −ka†a,
describes free propagation of the boson. The interaction part consists of pair creation and pair
annihilation of bosons. (The constant term − 1

2k is added for later convenience.) We define
the evolution operator U(x, x0) as the solution of the differential equation

i
∂

∂x
U(x, x0) = H(x)U(x, x0) (2.4)

with the initial condition U(x0, x0) = 1. Using this evolution operator, G(x, x ′) defined by
(1.6) can be written as [14]

G(x, x ′; k) = 〈0|U(∞, x)(a + a†)U(x, x ′)(a + a†)U(x ′,−∞)|0〉
〈0|U(∞,−∞)|0〉 . (2.5)

This is a specific form of the general algebraic expression mentioned above. To understand
the meaning of this expression, it is helpful to think about the expansion of the right-hand side
in powers of f . This expansion can be visualized by using Feynman diagrams. Graphically,
the right-hand side of (2.5) is obtained as the sum of all connected diagrams like the one
shown in figure 2(a). (Disconnected diagrams are cancelled by the vacuum amplitude in the
denominator.) Each diagram represents a path connecting the points x ′ and x. The rules for
interpreting the diagrams are shown in figure 2(b). It should be noted that the expression (2.5)
itself is valid even when the expansion in terms of f is not well defined, e.g., when f (x) is
infinite at x = ±∞.
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3. Scattering coefficients and the Green function

The scattering coefficients for a finite interval (x1, x2) are defined in the same way as the
reflection coefficients for semi-infinite intervals we have already introduced. We consider the
Fokker–Planck potential

V̄ (x) =




V (x1) x < x1,

V (x) x1 � x � x2,

V (x2) x2 < x.

(3.1)

Equation (1.2) with f (x) replaced by f̄ (x) ≡ −(1/2)(d/dx)V̄ (x) has two independent
solutions of the form

φ1(x) =
{

τ(x2, x1; k) e−ik(x−x1) x < x1,

e−ik(x−x2) + Rr(x2, x1; k) eik(x−x2) x2 < x,
(3.2a)

φ2(x) =
{

eik(x−x1) + Rl(x2, x1; k) e−ik(x−x1) x < x1,

τ (x2, x1; k) eik(x−x2) x2 < x.
(3.2b)

This defines the transmission coefficient τ , the right reflection coefficient Rr and the left
reflection coefficient Rl for the interval (x1, x2). In the boson representation, they can be
written as [14]

τ(x2, x1) = 〈0|aU(x2, x1)a
†|0〉

〈0|U(x2, x1)|0〉 , (3.3a)

Rr(x2, x1) = 〈0|aaU(x2, x1)|0〉
〈0|U(x2, x1)|0〉 , (3.3b)

Rl(x2, x1) = 〈0|U(x2, x1)a
†a†|0〉

〈0|U(x2, x1)|0〉 . (3.3c)

The expressions (3.3b) and (3.3c) also hold for semi-infinite intervals. Namely, Rr(x0,−∞)

and Rl(+∞, x0) defined by (1.8a) and (1.10a) can be expressed as

Rr(x0,−∞) = 〈0|aaU(x0,−∞)|0〉
〈0|U(x0,−∞)|0〉 , Rl(∞, x0) = 〈0|U(∞, x0)a

†a†|0〉
〈0|U(∞, x0)|0〉 . (3.4)

Similarly to the graphical interpretation of G(x, x ′) shown in figure 2, we can interpret (3.3)
in terms of diagrams. The transmission coefficient τ(x2, x1) is the sum of all the paths that
penetrate the interval (x1, x2), as in figure 3(a). The diagrams for the reflection coefficients
consist of the paths that start from one of the endpoints of the interval and return to that same
point, as shown in figures 3(b) and (c).

The scattering coefficients for finite intervals are the quantities that play major roles in
the invariant embedding method. We shall use them as building blocks for constructing the
full propagator (2.5). However, these quantities shall appear only in intermediate steps and
not remain in our final results. Our objective is to express everything in terms of the reflection
coefficients for semi-infinite intervals, without using the quantities (3.3) for finite intervals.

As explained in section 2, the propagator G(x, x ′) is the sum of the paths connecting
the points x ′ and x. Such paths can be constructed from the transmission and reflection
coefficients. The idea used here is essentially the same as the old one which dates back to the
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τ

Rr

Rl

x1 x2

x1 x2

x1 x2

(a)

(b)

(c)

Figure 3. A typical diagram of (a) τ , (b) Rr and (c) Rl . Such diagrams are to be evaluated with
the rules given in figure 2(b).

work by Stokes [15]. As illustrated in figure 4, we have [9]

G(x, x ′) = [1 + Rl(∞, x)]

( ∞∑
n=0

[Rl(∞, x)Rr(x,−∞)]n
)

× τ(x, x ′)

( ∞∑
m=0

[Rl(x, x ′)Rr(x
′,−∞)]m

)
[1 + Rr(x

′,−∞)]. (3.5a)

Note that this expression is not symmetric with respect to x and x ′. This asymmetrical treatment
is necessary in order to avoid double counting. It is also possible to exchange the roles of x
and x ′ in (3.5a) and write

G(x, x ′) = [1 + Rl(∞, x)]

( ∞∑
n=0

[Rl(∞, x)Rr(x, x ′)]n
)

× τ(x, x ′)

( ∞∑
m=0

[Rl(∞, x ′)Rr(x
′,−∞)]m

)
[1 + Rr(x

′,−∞)]. (3.5b)

The geometric series in equations (3.5) can be summed to yield

G(x, x ′) = [1 + Rl(∞, x)][1 + Rr(x
′,−∞)]τ(x, x ′)

[1 − Rl(∞, x)Rr(x,−∞)][1 − Rl(x, x ′)Rr(x ′,−∞)]
, (3.6a)

G(x, x ′) = [1 + Rl(∞, x)][1 + Rr(x
′,−∞)]τ(x, x ′)

[1 − Rl(∞, x)Rr(x, x ′)][1 − Rl(∞, x ′)Rr(x ′,−∞)]
. (3.6b)

We wish to eliminate τ(x, x ′), Rr(x, x ′) and Rl(x, x ′) from these expressions. We shall do
this in the next section.
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x' x +∞−∞

x +∞−∞

(a)

(b)

(c)

(d )

(e)

+ 1

1 +

Figure 4. The passage from x′ to x can be decomposed into the processes shown here.
They correspond to: (a) 1 + Rr(x

′, −∞), (b)
∑∞

n=0[Rl(x, x′)Rr (x
′, −∞)]n, (c) τ(x, x′),

(d)
∑∞

m=0[Rl(∞, x)Rr (x, −∞)]m, (e) 1 + Rl(∞, x).

4. Expressions in terms of reflection coefficients

The vacuum amplitude 〈0|U(x2, x1)|0〉, which appears in the denominators on the right-hand
sides of (3.3), is related to the transmission coefficient by the identity [13]

〈0|U(x2, x1)|0〉 = [τ(x2, x1)]
1/2. (4.1)

This identity can be checked diagrammatically for each order in f (figure 5). Since a constant
term − 1

2k is included in the Hamiltonian (2.3), we have 〈0|U(x2, x1)|0〉 = eik(x2−x1)/2 when f

is identically zero. We define

Z(x2, x1) ≡ e−ik(x2−x1)/2〈0|U(x2, x1)|0〉, (4.2)

so that Z = 1 when f = 0. This Z is the vacuum amplitude in the usual sense; the Feynman
diagrams for Z are bubble diagrams without external legs. These bubble diagrams are, in
general, disconnected. To deal with connected Feynman diagrams, we define

F(x2, x1) ≡ log Z(x2, x1). (4.3)

As is known in usual diagrammatic discussions in field theory [16], this F is obtained as the
sum of all connected loop diagrams (figure 6(a)). (In statistical mechanics, Z and F correspond
to the partition function and the free energy, respectively.) From (4.1), (4.2) and (4.3), we
have

τ(x2, x1) = exp[ik(x2 − x1) + 2F(x2, x1)]. (4.4)

Connected loop diagrams are obtained by connecting the two legs of Rr with a factor −f

(see figure 6(b)). This fact can be expressed as

F(x2, x1) = −1

2

∫ x2

x1

f (z)Rr(z, x1) dz. (4.5a)
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+

=

+

+

=

+

+

(a)

(b)

2

Figure 5. Diagrammatic interpretation of the identity (4.1) to (a) order f 2 and (b) order f 4. On
the left-hand sides are the diagrams of τ . On the right-hand sides, the straight lines correspond
to e2ik(x2−x1), which comes from the constant term − 1

2 k in the Hamiltonian. The bubbles are the
diagrams of Z2, where Z is defined by (4.2). (Using the quantity F defined by (4.3), we can write
Z2 = 1 + 2F + (2F)2/2 + · · ·. As shown in figure 6, the diagrams for F consist of connected loop
diagrams.)

(There is a factor 1/2 because the same diagram is obtained by exchanging the two legs of
Rr .) In the same way, F can also be obtained from Rl as shown in figure 6(c). So we have

F(x2, x1) = 1

2

∫ x2

x1

f (z)Rl(x2, z) dz. (4.5b)

In the invariant embedding method, differential equations satisfied by the scattering coefficients
are derived by varying an endpoint of the interval. Analogous differential equations for the
quantity F are obtained from equations (4.5) as

∂

∂x2
F(x2, x1) = −1

2
f (x2)Rr(x2, x1),

∂

∂x1
F(x2, x1) = −1

2
f (x1)Rl(x2, x1). (4.6)

There is another useful relation that connects F to the reflection coefficients:

F(xc, xa) − F(xc, xb) − F(xb, xa) = − 1
2 log[1 − Rl(xc, xb)Rr(xb, xa)], (4.7)

where xa � xb � xc. We can understand this relation diagrammatically. The left-hand side of
(4.7) is the sum of all connected loop diagrams which are restricted within the interval (xa, xc)

and which cross the point xb (figure 7(a)). Such diagrams are obtained from the reflection
coefficients as shown in figure 7(b). The series in figure 7(b) can be summed as

RlRr + 1
2 (RlRr)

2 + 1
3 (RlRr)

3 + · · · = − log(1 − RlRr). (4.8)

Hence we have (4.7). (There is an overall factor 1
2 on the right-hand side of (4.7) for the same

reason as in equations (4.5).) All the relations such as (4.5) or (4.7) are valid even when the
expansion in terms of f is not well defined. (It is not difficult to prove these relations without
using the diagrams.)

Differentiating both sides of (4.7) with respect to xa , xb or xc, and using (4.6), we obtain

∂

∂xc

log[1 − Rl(xc, xb)Rr(xb, xa)] = f (xc)[Rr(xc, xa) − Rr(xc, xb)], (4.9a)

∂

∂xb

log[1 − Rl(xc, xb)Rr(xb, xa)] = −f (xb)[Rl(xc, xb) + Rr(xb, xa)], (4.9b)
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(a)

(b) (c)

x1 x2

− f
Rr ×

x1 x2

f
Rl×

x1 x2

Figure 6. (a) A typical diagram of F(x2, x1). As shown in (b) and (c), such a diagram can be
obtained from a diagram for Rr or Rl (figures 3(b) and (c)).

+ + ⋅ ⋅ ⋅Rr Rl

Rr Rl

Rr Rl

Rr Rl

Rr Rl

Rr Rl

+1
2

1
3

(a)

(b)

xa xb xc

xb
xb

xb

Figure 7. (a) A diagram contributing to F(xc, xa)−F(xc, xb)−F(xb, xa). (b) Such diagrams can
be constructed in this way, using the reflection coefficients. (The factors 1

2 , 1
3 , etc are necessary in

order to avoid double counting.)

∂

∂xa

log[1 − Rl(xc, xb)Rr(xb, xa)] = f (xa)[Rl(xc, xa) − Rl(xb, xa)]. (4.9c)

Setting xc = z, xb = x1, xa = −∞ in (4.9a), and integrating both sides with respect to z from
x1 to x2, we have

log[1 − Rl(x2, x1)Rr(x1,−∞)] =
∫ x2

x1

f (z)[Rr(z,−∞) − Rr(z, x1)] dz, (4.10)

where we have used Rr(x1, x1) = 0. Using (4.10), we can rewrite (4.5a) as

F(x2, x1) = −1

2

∫ x2

x1

f (z)Rr(z,−∞) dz +
1

2
log[1 − Rl(x2, x1)Rr(x1,−∞)]. (4.11)

Substituting this into (4.4) yields

τ(x, x ′) = [1 − Rl(x, x ′)Rr(x
′,−∞)] exp

[
ik(x − x ′) −

∫ x

x ′
f (z)Rr(z,−∞) dz

]
. (4.12a)
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In the same way, using (4.5b) and (4.9c) we can derive

τ(x, x ′) = [1 − Rl(∞, x)Rr(x, x ′)] exp

[
ik(x − x ′) +

∫ x

x ′
f (z)Rl(∞, z) dz

]
. (4.12b)

On substituting (4.12a) into (3.6a), the factor including Rl(x, x ′) cancels out, and G(x, x ′)
is expressed solely in terms of reflection coefficients for semi-infinite intervals:

G(x, x ′) = [1 + Rl(∞, x)][1 + Rr(x
′,−∞)]

1 − Rl(∞, x)Rr(x,−∞)
exp

[
ik(x − x ′) −

∫ x

x ′
f (z)Rr(z,−∞) dz

]
.

(4.13a)

Similarly, from (4.12b) and (3.6b) we obtain

G(x, x ′) = [1 + Rl(∞, x)][1 + Rr(x
′,−∞)]

1 − Rl(∞, x ′)Rr(x ′,−∞)
exp

[
ik(x − x ′) +

∫ x

x ′
f (z)Rl(∞, z) dz

]
.

(4.13b)

On the other hand, integrating (4.9b) and setting xc = ∞, xa = −∞ gives∫ x

x ′
f (z)[Rl(∞, z) + Rr(z,−∞)] dz = log

1 − Rl(∞, x ′)Rr(x
′,−∞)

1 − Rl(∞, x)Rr(x,−∞)
. (4.14)

It is obvious that (4.13a), (4.13b) and (4.14) are consistent. A symmetric expression of
G(x, x ′) is obtained by multiplying (4.13a) and (4.13b), and taking the square root:

G(x, x ′) = [1 + Rl(∞, x)][1 + Rr(x
′,−∞)] eik(x−x ′)

[1 − Rl(∞, x)Rr(x,−∞)]1/2[1 − Rl(∞, x ′)Rr(x ′,−∞)]1/2

× exp

{
1

2

∫ x

x ′
f (z)[Rl(∞, z) − Rr(z,−∞)] dz

}
. (4.15)

5. Generalization

In this section, we shall derive a more general expression of the Green function, which includes
(4.15) as a special case. The derivation is based on a symmetry transformation which can be
understood as a rotation of the coordinate axes [17].

We define

X(x) ≡ ikx, Y (x) ≡ V (x)/2, (5.1)

where V (x) is the Fokker–Planck potential. Then (2.4) with (2.3) can be written as

∂

∂x
U(x, x0) = 1

2

[
dX

dx
(aa† + a†a) +

dY

dx
(aa − a†a†)

]
U(x, x0). (5.2)

We consider the rotation of the X–Y axes, defining(
Xθ

Yθ

)
≡

(
cos θ sin θ

−sin θ cos θ

) (
X

Y

)
. (5.3)

We also define the boson operators in the rotated frame as(
aθ

a
†
θ

)
≡

(
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

) (
a

a†

)
. (5.4)

They are indeed boson operators, satisfying the commutation relation[
aθ , a

†
θ

] = 1. (5.5)
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It is easy to see that equation (5.2) is covariant under this rotation; it sill holds when X, Y, a, a†

are replaced by the ones with subscript θ :

∂

∂x
U(x, x0) = 1

2

[
dXθ

dx

(
aθa

†
θ + a

†
θaθ

)
+

dYθ

dx

(
aθaθ − a

†
θa

†
θ

)]
U(x, x0). (5.6)

Let |0; θ〉 denote the vacuum state in the rotated frame, satisfying

aθ |0; θ〉 = 0, 〈0; θ |a†
θ = 0, 〈0; θ |0; θ〉 = 1. (5.7)

It can be shown that this state is related to the original vacuum as [14]

|0; θ〉 = (1 + η2)1/4 exp(ηa†a†/2)|0〉, (5.8a)

〈0; θ | = (1 + η2)1/4〈0| exp(−ηaa/2), (5.8b)

|0〉 = (1 + η2)1/4 exp
(−ηa

†
θa

†
θ

/
2
)|0; θ〉, (5.9a)

〈0| = (1 + η2)1/4〈0; θ | exp(ηaθaθ/2), (5.9b)

where

η ≡ tan
θ

2
. (5.10)

Using (5.9), we can rewrite (2.5) as

G(x, x ′) = 〈0; θ | eηaθ aθ /2U(∞, x)(a + a†)U(x, x ′)(a + a†)U(x ′,−∞) e−ηa
†
θ a

†
θ /2|0; θ〉

〈0; θ | eηaθ aθ /2U(∞,−∞) e−ηa
†
θ a

†
θ /2|0; θ〉

,

(5.11)

where

a + a† =
(

cos
θ

2
− sin

θ

2

)
aθ +

(
cos

θ

2
+ sin

θ

2

)
a
†
θ . (5.12)

Equation (5.11) holds for any θ , and so it is a generalized form of (2.5).
Just like (3.3), we define the scattering coefficients in the rotated frame:

τθ (x2, x1) ≡ 〈0; θ |aθU(x2, x1)a
†
θ |0; θ〉

〈0; θ |U(x2, x1)|0; θ〉 , (5.13a)

Rr,θ (x2, x1) ≡ 〈0; θ |aθaθU(x2, x1)|0; θ〉
〈0; θ |U(x2, x1)|0; θ〉 , (5.13b)

Rl,θ (x2, x1) ≡ 〈0; θ |U(x2, x1)a
†
θa

†
θ |0; θ〉

〈0; θ |U(x2, x1)|0; θ〉 . (5.13c)

Since the evolution equation (5.6) has the same form as (5.2), these scattering coefficients can
be interpreted diagrammatically in the same way as before (i.e., as in figure 3). The rules in
figure 2(b) are now generalized to the ones shown in figure 8; as can be seen from the right-
hand side of (5.6), the free propagator connecting x1 and x2 is now exp[Xθ(x2)−Xθ(x1)], and
the factor assigned to each turning point z is ±Fθ(z), where

Fθ(x) ≡ −dYθ(x)

dx
. (5.14)

Since the expression (5.11) involves the state e−ηa
†
θ a

†
θ /2|0; θ〉, it is convenient to define, in

addition to (5.13), the quantities
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−Fθ(z)e[Xθ (z2) −Xθ(z1)]

×

z

×

z

Fθ(z)

z2z1

Figure 8. The diagrammatic rules in the rotated frame with angle θ .

(b)(a)

−η
−η
−η

−∞ x x + ∞

η
η
η

Figure 9. Diagrammatic interpretation of (a) ρr,θ (x) and (b) ρl,θ (x). Now the path is reflected at
infinity. Each reflection at ±∞ gives a factor ±η.

ρr,θ (x) ≡ 〈0; θ |aθaθU(x,−∞) e−ηa
†
θ a

†
θ /2|0; θ〉

〈0; θ |U(x,−∞) e−ηa
†
θ a

†
θ /2|0; θ〉

, (5.15a)

ρl,θ (x) ≡ 〈0; θ | eηaθ aθ /2U(∞, x)a
†
θ a

†
θ |0; θ〉

〈0; θ | eηaθ aθ /2U(∞, x)|0; θ〉 . (5.15b)

They can be interpreted as reflection coefficients including additional scattering at infinity (see
figure 9.)

The expressions in the rotated frame corresponding to (4.12a) and (4.12b) are obtained by
adding the subscript θ to the scattering coefficients and making the replacements ikx → Xθ(x)

and f (z) → Fθ(z):

τθ (x, x ′)= [1 − Rl,θ (x, x ′)Rr,θ (x
′,−∞)] exp

[
Xθ(x)− Xθ(x

′)−
∫ x

x ′
Fθ(z)Rr,θ (z,−∞) dz

]
,

(5.16a)

τθ (x, x ′) = [1 − Rl,θ (∞, x)Rr,θ (x, x ′)] exp

[
Xθ(x) − Xθ(x

′) +
∫ x

x ′
Fθ(z)Rl,θ (∞, z) dz

]
.

(5.16b)

From the derivation of (4.12), and from the diagrammatic interpretation of the quantities ρr,θ

and ρl,θ shown in figure 9, it is obvious that these expressions still hold when Rr,θ (z,−∞)

and Rl,θ (∞, z) are replaced by ρr,θ (z) and ρl,θ (z), respectively:

τθ (x, x ′) = [1 − Rl,θ (x, x ′)ρr,θ (x
′)] exp

[
Xθ(x) − Xθ(x

′) −
∫ x

x ′
Fθ(z)ρr,θ (z) dz

]
, (5.17a)

τθ (x, x ′) = [1 − ρl,θ (x)Rr,θ (x, x ′)] exp

[
Xθ(x) − Xθ(x

′) +
∫ x

x ′
Fθ(z)ρl,θ (z) dz

]
. (5.17b)
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Comparing (2.5) with (5.11), we find that the generalized forms of (3.6a) and (3.6b)
are obtained by making the following replacements: first, the scattering coefficients for the
interval (x ′, x) are replaced by the quantities with subscript θ :

τ(x, x ′) → τθ (x, x ′), Rr(x, x ′) → Rr,θ (x, x ′), Rl(x, x ′) → Rl,θ (x, x ′). (5.18)

Second, the reflection coefficients for semi-infinite intervals are replaced not by Rr,θ and Rl,θ

but by ρr,θ and ρl,θ :

Rr(z,−∞) → ρr,θ (z), Rl(∞, z) → ρl,θ (z), (5.19)

where z is either x or x ′. This is because the state e−ηa
†
θ a

†
θ /2|0; θ〉 appears in (5.11) instead

of |0; θ〉. Third, since the operator a + a† is replaced by the right-hand side of (5.12), the
expression [1 + Rl(∞, x)][1 + Rr(x,−∞)] in (3.6) needs to be replaced as

[1 + Rl(∞, x)][1 + Rr(x
′,−∞)] → Aθ(x, x ′), (5.20)

where

Aθ(x, x ′) ≡
[

cos
θ

2
− sin

θ

2
+

(
cos

θ

2
+ sin

θ

2

)
ρl,θ (x)

]

×
[

cos
θ

2
+ sin

θ

2
+

(
cos

θ

2
− sin

θ

2

)
ρr,θ (x

′)
]

. (5.21)

Making these replacements in (3.6) leads to

G(x, x ′) = Aθ(x, x ′)τθ (x, x ′)
[1 − ρl,θ (x)ρr,θ (x)][1 − Rl,θ (x, x ′)ρr,θ (x ′)]

, (5.22a)

G(x, x ′) = Aθ(x, x ′)τθ (x, x ′)
[1 − ρl,θ (x)Rr,θ (x, x ′)][1 − ρl,θ (x ′)ρr,θ (x ′)]

. (5.22b)

Substituting (5.17a) and (5.17b) into (5.22a) and (5.22b), respectively, we have

G(x, x ′) = Aθ(x, x ′)
1 − ρl,θ (x)ρr,θ (x)

exp

[
Xθ(x) − Xθ(x

′) −
∫ x

x ′
Fθ(z)ρr,θ (z) dz

]
, (5.23a)

G(x, x ′) = Aθ(x, x ′)
1 − ρl,θ (x ′)ρr,θ (x ′)

exp

[
Xθ(x) − Xθ(x

′) +
∫ x

x ′
Fθ(z)ρl,θ (z) dz

]
, (5.23b)

where

Xθ(x) = ikx cos θ + 1
2V (x) sin θ, Fθ (x) = ik sin θ + f (x) cos θ. (5.24)

Since equations (5.23) hold for any θ , we may let θ → −θ in (5.23b):

G(x, x ′) = A−θ (x, x ′)
1 − ρl,−θ (x ′)ρr,−θ (x ′)

exp

[
X−θ (x) − X−θ (x

′) +
∫ x

x ′
F−θ (z)ρl,−θ (z) dz

]
.

(5.25)

A symmetric expression is obtained by taking the geometric mean of (5.23a) and (5.25):

G(x, x ′) =
(

Aθ(x, x ′)A−θ (x, x ′)
[1 − ρl,θ (x)ρr,θ (x)][1 − ρl,−θ (x ′)ρr,−θ (x ′)]

)1/2

× exp

{
1

2
[Xθ(x) + X−θ (x) − Xθ(x

′) − X−θ (x
′)]

}

× exp

{
−1

2

∫ x

x ′
[Fθ(z)ρr,θ (z) − F−θ (z)ρl,−θ (z)] dz

}
. (5.26)

Thus, we have obtained expressions for G(x, x ′) in terms of ρr,θ and ρl,θ .
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The quantities ρr,θ and ρl,θ can be expressed in terms of Rr(x,−∞) and Rl(∞, x), as we
shall now see. Using (5.8), (5.9) and (5.4), we write (5.15a) as

ρr,θ (x) = 〈0| e−ηaa/2
(

cos θ
2 a − sin θ

2 a†)( cos θ
2 a − sin θ

2 a†)U(x,−∞)|0〉
〈0| e−ηaa/2U(x,−∞)|0〉 . (5.27)

Using the commutation relations

[a†a, e−ηaa/2] = ηaa e−ηaa/2 (5.28)

and

[a†a†, e−ηaa/2] = (η + 2ηa†a − η2aa) e−ηaa/2, (5.29)

equation (5.27) can be modified to the form

ρr,θ (x) = −η + (1 + η2)
〈0| e−ηaa/2aaU(x,−∞)|0〉
〈0| e−ηaa/2U(x,−∞)|0〉 , (5.30)

where we have also used the definition (5.10). Using the diagrammatic interpretation, we can
easily see that

〈0|a2nU |0〉
〈0|U |0〉 = (2n)!

2nn!
Rn

r . (5.31)

(See [13] for an explanation.) Therefore,

〈0| e−ηaa/2U |0〉
〈0|U |0〉 =

∞∑
n=0

(2n)!

(2nn!)2
(−ηRr)

n = (1 + ηRr)
−1/2. (5.32)

Hence, we obtain

〈0| e−ηaa/2aaU |0〉
〈0| e−ηaa/2U |0〉 = −2

d

dη
log

〈0| e−ηaa/2U |0〉
〈0|U |0〉 = d

dη
log(1 + ηRr) = Rr

1 + ηRr

. (5.33)

Substituting this into (5.30) gives

ρr,θ (x) = Rr(x,−∞) − η

1 + ηRr(x,−∞)
. (5.34a)

In the same way, we have

ρl,θ (x) = Rl(∞, x) + η

1 − ηRl(∞, x)
. (5.34b)

Substituting (5.24) and (5.34) into (5.26) we obtain, after some calculation,

G(x, x ′) =
(

[1 + ηRr(x)][1 + ηRl(x
′)]

[1 + ηRl(x)][1 + ηRr(x ′)]

)1/2 [1 + Rl(x)][1 + Rr(x
′)] eik(x−x ′)

[1 − Rr(x)Rl(x)]1/2[1 − Rr(x ′)Rl(x ′)]1/2

× exp

[
−ηik

∫ x

x ′

(
Rr(z)

1 + ηRr(z)
+

Rl(z)

1 + ηRl(z)

)
dz

]

× exp

[
−1

2
(1 − η2)

∫ x

x ′
f (z)

(
Rr(z)

1 + ηRr(z)
− Rl(z)

1 + ηRl(z)

)
dz

]
, (5.35)

where Rr(x) and Rl(x) stand for Rr(x,−∞) and Rl(∞, x), respectively. This is the
generalized form of (4.15). Equation (5.35) holds for any θ , i.e., for any real number
η = tan θ . We recover (4.15) by setting θ = 0 (η = 0).
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6. Expression with θ = π/2

With θ = ±π/2 (η = ±1), the right-hand side of (5.35) takes a form that does not include the
function f (x) explicitly. In particular, we have a very simple expression with θ = +π/2. Let
us define

S(x; k) ≡ Rl(∞, x; k)

1 + Rl(∞, x; k)
+

Rr(x,−∞; k)

1 + Rr(x,−∞; k)
. (6.1)

Setting η = 1 in (5.35), and using (6.1), we can write

G(x, x ′; k) = 1√
[1 − S(x; k)][1 − S(x ′; k)]

exp

[
ik(x − x ′) − ik

∫ x

x ′
S(z; k) dz

]
. (6.2)

Thus, the Green function is expressed in terms of the single function S defined by (6.1).
This expression is valid even when there are bound states. The right-hand side

of (6.2) becomes infinite when S(x; k) = 1. Note that S(x; k) = 1 is equivalent to
Rl(∞, x; k)Rr(x,−∞; k) = 1, which is obviously the condition for resonance. (This
condition does not depend on x; if S(x; k) = 1, then S(x ′; k) = 1 too.) This means that
k2 is an eigenvalue of the Schrödinger operator if S(x; k) = 1. Otherwise, (6.2) is always
finite2.

7. Relation with the WKB approximation

It is interesting to think about the connection between (6.2) and the WKB method. In the
leading order WKB approximation, a wavefunction satisfying (1.1) has the form

ψ(x) � 1√
p(x)

exp

[
i
∫ x

p(z) dz

]
, (7.1)

where p(x) is the local wavelength for the Schrödinger equation defined by

p(x) ≡
√

k2 − VS(x). (7.2)

The function G(x, x ′) given by (6.2), with fixed x ′, is an exact solution of (1.1) for x > x ′.
Comparing (7.1) with (6.2), we can see that the quantity k(1 − S) in the exact expression
corresponds to the local wavelength p in the WKB approximation.

Let us first see how (7.1) can be recovered from (6.2). If f (x) is constant, say f (x) = c,
then Rr and Rl take the form [9]

Rr(x,−∞; k) = −Rl(∞, x; k) = ik − i
√

k2 − c2

c
. (7.3)

Suppose that, for a non-constant f (x), the reflection coefficients can be approximated by the
same form as (7.3)

Rr(x,−∞; k) � ik − i
√

k2 − f 2(x)

f (x)
, Rl(∞, x; k) � −ik + i

√
k2 − f 2(x)

f (x)
. (7.4)

Substituting (7.4) into (6.1) gives the approximation for S,

S(x; k) � 1 − 1

k

√
k2 − f 2(x). (7.5)

2 If f (+∞) and f (−∞) are both finite, or if Im k > 0, then |S(x; k)| is finite for any x. In other cases it may happen
that |S(x; k)| = ∞ for some x, but this causes no problems.
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If we assume that f (x) varies slowly so that k2 − f 2 � k2 − f 2 − f ′, then

k[1 − S(x; k)] �
√

k2 − VS(x) = p(x). (7.6)

This reproduces the WKB approximation (7.1).
Let us make a more detailed comparison by considering the higher order corrections.

Since the WKB expansion is essentially a high-energy expansion, it can be compared with the
expansion in terms of 1/k. The asymptotic expansion of the reflection coefficients in powers
of 1/k was studied in [11]. Using the formulae derived there, we can express the corrections
to (7.4) as a series in powers of 1/k. We have

Rr(x,−∞) = i
k −

√
k2 − f 2

f
− f ′

(2ik)2
− f ′′

(2ik)3
+

5f 2f ′ − f ′′′

(2ik)4
+ · · ·, (7.7a)

Rl(∞, x) = −i
k −

√
k2 − f 2

f
− f ′

(2ik)2
+

f ′′

(2ik)3
+

5f 2f ′ − f ′′′

(2ik)4
+ · · ·. (7.7b)

The condition for the validity of (7.7) as an asymptotic expansion is discussed in [11].
Substituting (7.7) into (6.1), we obtain

S(x) = 1 −
√

k2 − f 2

k
+

f ′

2k2
+

1

8k4
[2f 2f ′ − (f ′)2 − 2ff ′′ − f ′′′] + · · ·. (7.8)

(A formula is available for the coefficient of 1/kn in the expansion (7.8) for an arbitrary
positive integer n.) By using

√
k2 − VS =

√
k2 − f 2 − f ′

2k
− (f ′)2 + 2f 2f ′

8k3
+ · · ·, (7.9)

we can rewrite (7.8) in terms of VS as

S(x) = 1 −
√

k2 − VS

k
− V ′′

S

8k4
− 1

32k6

[
5(V ′

S)
2 + 6VSV

′′
S − V

(4)
S

]
+ · · ·. (7.10)

In the WKB method, on the other hand, the wavefunction incorporating the higher order
corrections is written as [18]

ψ(x) = 1√
W(x)

exp

[
i
∫ x

W(z) dz

]
, (7.11)

W = W0 + W1 + W2 + · · ·, (7.12)

where

W0(x) = p(x), W1(x) = − p′′

4p2
+

3(p′)2

8p3
, W2(x) = 1

16

p(4)

p4
+ · · · , etc. (7.13)

The WKB expansion (7.12) is an expansion in powers of the constant h̄2 (which we have set
to be unity) which multiplies the first term on the left-hand side of (1.1). It is easy to see
that W1 = O(1/k3),W2 = O(1/k5), etc as k → ∞. (The terms of W2 omitted in (7.13) are
O(1/k7).) So we can rearrange (7.12) into an expansion in powers of 1/k. We have

W1 = V ′′
S

8k3
+

3VSV
′′

S

16k5
+

5(V ′
S)

2

32k5
+ O(1/k7), W2 = − V

(4)
S

32k5
+ O(1/k7), etc. (7.14)

It is obvious that (7.10) is equivalent to (7.12) with (7.14), where W = 1 − kS.
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Let us next see how the Bremmer series can be described in our formalism. For this
purpose, it is convenient to make use of the rotation introduced in section 5 with an imaginary
angle θ . We define

θ(x) ≡ arctan
if (x)

k
. (7.15)

If f is a constant, the rotation (5.3) with this angle θ is a transformation to the frame of
coordinates in which no scattering takes place [17]. Using this θ(x), the quantity on the
right-hand sides of (7.4) can be written as

i
k −

√
k2 − f 2(x)

f (x)
= tan

θ(x)

2
. (7.16)

The expressions (7.4) are exact if θ(x) is an x-independent constant. The corrections to (7.4)
can be expressed as a series in powers of θ ′(x) = (d/dx)θ(x):

Rr(x,−∞) = tan
θ(x)

2
− sec2 θ(x)

2

[
1

2

∫ x

−∞
dz θ ′(z) e2iA1

+
1

8

∫ x

−∞
dz1

∫ z1

−∞
dz2

∫ z1

−∞
dz3 θ ′(z1)θ

′(z2)θ
′(z3) eiA2 + · · ·

]
, (7.17a)

Rl(∞, x) = −tan
θ(x)

2
− sec2 θ(x)

2

[
1

2

∫ ∞

x

dz θ ′(z) e−2iA1

+
1

8

∫ ∞

x

dz1

∫ ∞

z1

dz2

∫ ∞

z1

dz3 θ ′(z1)θ
′(z2)θ

′(z3) e−iA2 + · · ·
]

, (7.17b)

where we have defined

q(x) ≡
√

k2 − f 2(x), (7.18)

A1 ≡
∫ x

z

q(w) dw, (7.19a)

A2 ≡
∫ x

z2

q(w) dw +
∫ x

z3

q(w) dw +
∫ z1

z2

q(w) dw +
∫ z1

z3

q(w) dw. (7.19b)

(Since it is not the purpose of the present paper to discuss the approximation methods for the
reflection coefficients, we omit the explanation here. Let us only mention that (7.17) can be
derived from equations (10.2) and (10.3) of [17].) From (7.17) and (6.1) we obtain

S(x) = 1 − q(x)

k
− 1

2
[
cos 1

2θ(x) + sin 1
2θ(x)

]2

∫ x

−∞
dz θ ′(z) exp

[
2i

∫ x

z

q(w) dw

]

− 1

2
[
cos 1

2θ(x) − sin 1
2θ(x)

]2

∫ ∞

x

dz θ ′(z) exp

[
2i

∫ z

x

q(w) dw

]
+ · · · . (7.20)

(It is possible to construct a formula for the term of an arbitrary order in the expansion (7.20).)
Just like (7.10), we can rewrite (7.20) in terms of p as

S(x) = 1 − p(x)

k
+

p(x)

2k

∫ x

−∞
dz

p′(z)
p(z)

exp

[
2i

∫ x

z

p(w) dw

]

− p(x)

2k

∫ ∞

x

dz
p′(z)
p(z)

exp

[
2i

∫ z

x

p(w) dw

]
+ · · ·. (7.21)
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Substituting (7.21) into (6.2), expanding the right-hand side and carrying out integration by
parts, we obtain

G(x, x ′) = 1√
p(x)p(x ′)

exp

[
i
∫ x

x ′
p(z) dz

] {
1 +

1

2

∫ x ′

−∞
dz

p′(z)
p(z)

exp

[
2i

∫ x ′

z

p(w) dw

]

− 1

2

∫ ∞

x

dz
p′(z)
p(z)

exp

[
2i

∫ z

x

p(w) dw

]
+ · · ·

}
, (7.22)

which corresponds to the ordinary Bremmer series. Whereas the Bremmer series is an
expansion of the wavefunction ψ(x), the expression (7.20) or (7.21) gives a similar expansion
for the quantity corresponding to W(x) of equation (7.11).

As we have noted, the WKB approximation (7.1) is obtained by replacing the Fokker–
Planck potential V (x) by a linear function at each point x. Another possible approximation
is to replace V (x) by a quadratic function at each x. The reflection coefficients for quadratic
potentials can be exactly obtained [11]. By substituting these exact expressions into (6.2) with
(6.1), we obtain an approximation for the Green function. In some cases, this approximation
can be better than the WKB approximation.

The methods related to the WKB approximation we have seen above are just an
example of using (6.2) for approximate evaluation. In making an approximation, in general,
it is easier to deal with the reflection coefficients than the Green function itself. For
each approximation method for the reflection coefficients, the expression (6.2) gives the
corresponding approximation for the Green function.

8. Conclusion

In this paper, we have derived some exact expressions for the Green function. A general
symmetric expression is given by (5.35). Reflecting the symmetry of the Fokker–Planck
equation, this expression includes an arbitrary parameter η. The simplest expression (6.2) is
obtained by setting η = 1. Analytic properties of the reflection coefficients can be studied
relatively easily. By using the expressions derived here, we can investigate the properties of
the Green function on the basis of the analysis of the reflection coefficients. In particular,
(6.2) is useful for studying the high-energy behaviour of the Green function. It also serves as
a starting point for various approximation methods.

The reflection coefficients Rr(x,−∞) and Rl(∞, x) that appear in our expressions have
been defined by using the Fokker–Planck equation. Of course, this is not the only possible
way of defining reflection coefficients for semi-infinite intervals. It is also possible to express
the Green function in terms of reflection coefficients defined in a different way, without using
the Fokker–Planck equation. However, the resulting expressions become more complicated if
we use a different (inequivalent) definition of the reflection coefficients.
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